NVIDIA DRIVE Thor brings safety and performance to automotive

Automobiles are examples of multi-domain computing. Electronic Control Units (ECUs) execute various functions, from autonomous driving workloads to in-vehicle infotainment. ECUs were traditionally all over the vehicle, close to the relevant sensors and actuators. Nowadays OEMs are moving towards a vehicle Electric and Electronic (E/E) architecture combining and consolidating ECUs and interconnects via an Ethernet network.

As OEMs navigate the shift toward software-defined vehicles, NVIDIA aims to position itself at the forefront of the next generation of autonomous vehicle computing. At the GTC 2022 Keynote, NVIDIA revealed DRIVE Thor, a unifying superchip targeting automakers’ 2025 models. DRIVE Thor unifies the previously disparate functions across ECUs into a single architecture for greater efficiency and increased overall equipment effectiveness.

Besides consolidating multi-domain computing into a single, powerful SoC, DRIVE Thor brings functional safety into sharp focus. Automotive SoCs and ECUs must satisfy rigorous safety requirements before being integrated into a manufacturer’s vehicle. For instance, the ISO 26262 standard defines an Automotive Safety Integrity Level (ASIL) to map requirements and processes to the system criticality. According to that vision, DRIVE Thor is designed to be ASIL D functionally safe.

The superchip won’t hit production until 2025 but is already drawing lots of attention from OEMs and analysts as a step change in automotive performance and safety. Read more about the announcement and tell us what you think!